Feedback and its Applications

LECTURE 6 OSCILLATOR

× Introduction of Oscillator

- × Linear Oscillator
 - + Wien Bridge Oscillator
 - + RC Phase-Shift Oscillator
 - + LC Oscillator
- × Stability

APPLICATION OF OSCILLATORS

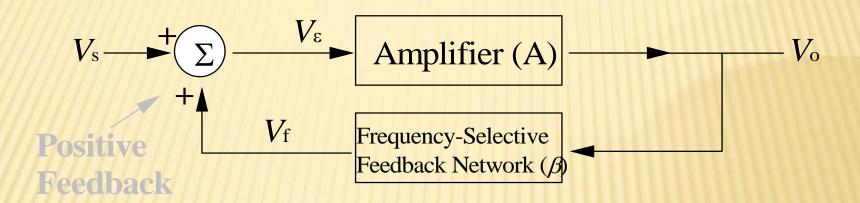
× Oscillators are used to generate signals, e.g.

- + Used as a local oscillator to transform the RF signals to IF signals in a receiver;
- + Used to generate RF carrier in a transmitter
- + Used to generate clocks in digital systems;
- + Used as sweep circuits in TV sets and CRO.

LINEAR OSCILLATORS

- 1. Wien Bridge Oscillators
- 2. RC Phase-Shift Oscillators
- 3. LC Oscillators
- 4. Stability

INTEGRANT OF LINEAR OSCILLATORS



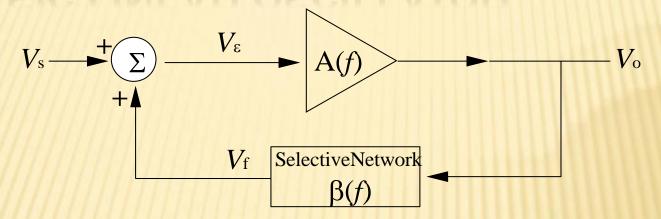
For sinusoidal input is connected

"Linear" because the output is approximately sinusoidal

A linear oscillator contains:

- a frequency selection feedback network
- an amplifier to maintain the loop gain at unity

BASIC LINEAR OSCILLATOR



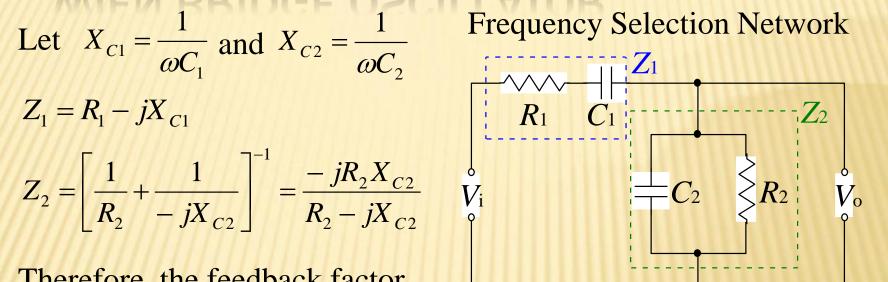
$$V_o = AV_{\varepsilon} = A(V_s + V_f)$$
 and $V_f = \beta V_o$
 $\Rightarrow \frac{V_o}{V_s} = \frac{A}{1 - A\beta}$

If $V_s = 0$, the only way that V_o can be nonzero is that loop gain $A\beta=1$ which implies that

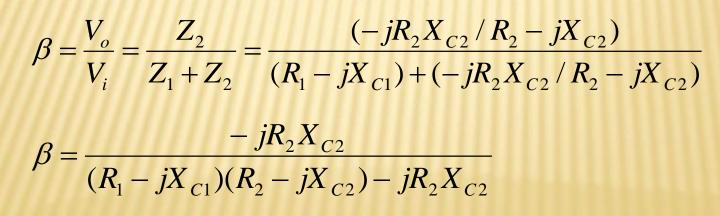
 $|A\beta|=1$ $\angle A\beta=0$ (Barkhausen Criterion)

WIEN BRIDGE OSCILLATOR

Frequency Selection Network



Therefore, the feedback factor,



 β can be rewritten as:

$$\beta = \frac{R_2 X_{C2}}{R_1 X_{C2} + R_2 X_{C1} + R_2 X_{C2} + j(R_1 R_2 - X_{C1} X_{C2})}$$

For *Barkhausen Criterion*, imaginary part = 0, i.e.,

 $R_1 R_2 - X_{C1} X_{C2} = 0$ or $R_1 R_2 = \frac{1}{\omega C_1} \frac{1}{\omega C_2}$ $\Rightarrow \omega = 1/\sqrt{R_1 R_2 C_1 C_2}$

Supposing, $R_1 = R_2 = R$ and $X_{C1} = X_{C2} = X_C$, $\beta = \frac{RX_C}{3RX_C + j(R^2 - X_C^2)}$

